Radicals Validation Subgroup

Ross Salawitch Jet Propulsion Laboratory, California Institute of Technology

6 Presentations

NO₂: OMI column, ground based validation, Table Mtn, Ca. – S. Sander OMI column, ground based validation, Tri-Cities, Wa. – E. Spinei HIRDLS profiles vs ACE profiles – C. Randall

BrO: OMI global column observations – T. Kurosu MLS profiles, balloon-based validation – L. Kovalenko

OH & HO_2 :

MLS Profiles, balloon-based validation – H. Pickett and T. Canty

Notes: CIO will be discussed in chlorine breakout, Wed afternoon Important "validation issues" highlighted in red

OMI NO₂

- Mountain topography and air circulation require close coincidence with OMI footprint for proper comparison
- Reasonable correlation between OMI and ground based column NO₂
- OMI NO₂ is 20 to 30% less than ground based NO₂
- Similar results seen for Tri-City, Washington comparisons ⇒ Spinei poster and for independent OMI comparisons ⇒ Gleason talk

OMI NO₂

Figure 8. Comparison of OMI Tropospheric NO₂ Vertical Column

E. Spinei talk/poster

- European inter-comparison of ground based (multiple instruments) and space based NO₂ ⇒ occurring now!
- Inter-comparison campaign for NO₂ and O₃ at Table Mountain, Ca. including JPL FTUVS, WSU MF-DOAS, and GSFC instruments being planned for ~ mid-May to mid-June 2007
 - Other groups welcome
 - Coordination with Aura, TC⁴ test flights, possibly SCIAMACHY desired

HIRDLS NO₂ compared to ACE NO₂

- NO₂ retrieved from HIRDLS radiances, accounting for kapton emission
- Initial comparison to ACE shows similar patterns
 - ⇒ very promising

HIRDLS NO₂ compared to ACE NO₂

- Inter-comparisons at high latitudes only
- HIRDLS NO₂ lower than ACE by ~10 to 100%
- Note:
 - ACE NO₂ lower than HALOE NO₂ by 0 to 10%
 - Comparisons not yet factoring in "time of day"
 (NO₂ vs SZA goes in "right direction" for explaining some of the differences)

Improvements of HIRDLS retrieval, focusing on kapton correction, underway

Global BrO from OMI

BrO August 2006 – cloud fraction < 20%

T. Kurosu talk

- Must use Version 0.9.50 or later!
- First public release: Oct 2006
- BrO columns compare favorably to GOME columns (prior years)
- Release of BrO from ice shelf and salt lakes clearly seen by OMI
- Volcanic release being studied: SO₂ signal must be separated

Global BrO from OMI

BrO August 2006 - no cloud screening

T. Kurosu talk

Future steps:

- sensitivity of BrO retrieval to O₃, NO₂ absorptions
- understanding correlation of BrO with high albedo
- tropospheric vs stratospheric contributions to column BrO
 - ⇒ bromine budget and role of VSL bromocarbons

Empirical "OMI-based" quantification of tropospheric vs stratospheric contributions to column BrO will be attempted. Nonetheless, acquisition of aircraft BrO profiles in OMI footprint is an outstanding, as yet unachieved validation need

Upper stratospheric BrO from MLS

- Three versions of MLS BrO:
 - 1.5 : not useful for scientific analysis
 - BinRad: research adjunct of 1.5, useful for scientific analysis from 2 to 10 hPa
 - 2.1: looks better than 1.5, but not as good as BinRad
- MLS (BinRad) and SAOZ (balloon) BrO and Br_y agree to within respective uncertainties, 2 to 10 hPa
- MLS and DOAS (balloon) BrO also agree within uncertainties

Upper stratospheric BrO from MLS

Bromine abundance (ppt)

L. Kovalenko talk & N. Livesey paper

First science result:

- $Br_v = 18.6 \pm 5.5 \text{ ppt}$
- VSL bromocarbon contribution to $Br_y \Rightarrow 3.0 \pm 5.5 \text{ ppt}$

Livesey et al., GRL, accepted, 2006

Near Future:

- Comparison of Vers 2.1 BrO with SLIMCAT, DOAS, SAOZ, & SCIAMACHY
- Extend BrO profile to higher altitudes using model day/night differences
- Use of stratospheric BrO profiles in analysis of column BrO (i.e., synergistic analysis of MLS and OMI BrO)

Upper stratospheric HO_x: Sept 2005

H. Pickett & T. Canty talk & T. Canty poster;

Update to:
H. Pickett et al.
& T. Canty et al.
GRL 2006 papers

- Figures show OH, HO₂, HO_x, and HO₂/OH from:
 - MLS Vers 2.1 (red), two balloon instruments (FIRS-2 and BOH) (green/blue), and model (black)
- Vers 2.1 provides:
 - higher vertical resolution retrieval of mesospheric OH
 - smoother stratospheric retrieval HO₂
- Greater discrepancy between MLS and balloon OH near 40 km during Sept 2005 than seen during Sept 2004
 - reasons under study and not yet understood, but <u>not</u> due to updated MLS retrieval version
 - Sept 2004 profiles were subject of published HO_x validation paper (Pickett et al., GRL, 2006)

Upper stratospheric HO_x: Sept 2005

H. Pickett & T. Canty talk & T. Canty poster;

Update to:
H. Pickett et al.
& T. Canty et al.
GRL 2006 papers

Initial science results, based on MLS Vers 1.5 and Sept 2004 balloon data:

- No indication of previously noted "HO_x dilemma" in comparison of modeled & meas HO_x profiles
- Change to ${\rm HO_x}$ kinetics resulting in "best agreement" with ${\rm HO_x}$ does not resolve upper stratospheric "ozone deficit problem"
- Above results based on MLS Vers 1.5 profiles, Sept 2004 to June 2005 & Sept 2004 balloon data (Canty et al., GRL, 2006)

Preliminary analysis of MLS Vers 2.1 profiles for Sept 2005 yields same scientific conclusions as above (Canty et al. poster)